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Degree of Approximation by Monotone Polynomials I.
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In late years, some attention has been attracted to the estimation ofthe degree
of approximation of a continuous function by monotone polynomials, and
more generally, by polynomials Pn ofdegree (at most) n, with a prescribed sign
of the derivative P~k) (x) for some given k. See Shisha [3], Roulier [2]. Here we
treat only the first case. (One can show uniqueness of the polynomial of best
approximation in this case.) Let F be an increasing continuous function on
[-1, +1], let En(F) be the degree of approximation of Fby polynomials Pnof
degree n. Let En*(F) denote the degree of approximation of F by increasing
polynomials of degree n. We show that En*(F) satisfies an inequality of
Jackson's type, even in its sharpened form (see Theorem 2). The proof will be
conducted by means of trigonometric approximation. A continuous 27T
periodic function on [-7T,7T] will be called bell-shaped, if it is even and if it
decreases on [O,7T]. By w(f,h) = w(h) we denote the modulus ofcontinuity off,
by C1, C2 , ••• , absolute constants.

THEOREM 1. There exists a constant C with the following property. For each
bell-shaped function f, one can find a bell-shaped trigonometric polynomial Tn
for which

If(x) - T,,(x)! < Cw (f,~).

Proof Let I n be the Jackson integral off,

In(x) = JnCf, x) = J:71 K,,(x- t)f(t)dt,

Kit) = A;I (8m ~)4,
S10 2

(1)
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k=O,l, ... ,I1. (2)

where An is a normalizing constant. We put

(
(
7Tk) 7Tk 7T(k + 1)

( ) (I) I - = Ck> for - <;; t < ,
g t =g ,t = n n n

g(-t), for -7T <;; t <;; 0.

Thengis even and 11(t) - g(t)1 <;; w(7Tln). Let T.(t)=Jn(g,t). Then Tn is even,
and because of the inequality

II(t)-Tn(t)1 <;; 11(t)-Jn(lt)! + /In(lt)-Jn(g,t)/

<;; C1 W (I ~) + 1[1- gil< C2 W (I ~) , (3)

it is sufficient to show that Tn(x) is decreasing on (0, 7T).
Let Ok> k = 0, ... , n - 1, be defined by

k = 0, ..., 11 - 1.

Then Ok ;> 0, and

n-I n

2: j

17(k+l)/n 2: j17kln
Tn(x) = Ok Kn(x - t) dt = Ok-I Kn(x - t) dt.

-17(k+l)/n -17kln
~o ~1

Hence it is sufficient to show that the following functions are decreasing on
(0,7T):

j

17kln jX+(17kln)
4>k(X) = Kn(x - t) dt = Kn(t) dt.

-17kln x-(nkln)

But

This follows from the following inequality:

sin (IX + f1);> Isin(1X - f1)/

In fact, sin (IX + f1) - sin (IX - f1) = 2 sin f1 cos IX ;> 0, and sin (IX + f1) + sin (IX - f1)
=2sinlXcosf1;> 0.
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THEOREM 2. There is a constant Co with the following property. If F is an
increasing function on [-1, +1], then there exists a sequence ofpolynomials Pm
increasing on [-1, +1], such that

(
JT=X2 1)Lln(x) = max '2 ' n=I,2, ...n n

(4)

Proof. The functionf( t) = F(cos t) is bell-shaped. For this function, we prove
similarly to (l) ofTheorem 1,

(
ISin t I 1)

oit)=max -n~'fli,' (5)

with some bell-shaped Tn' We have ([1], p. 68), if Jit) is the Jackson poly
nomial of the functionf,

IF(cos t) - In(t) I< C1 w(F, on)'

We put get) = g(J, t); then, as before, Jig, t) is bell-shaped, while

(6)

If(t)-g(J,t)1 <w(F,h), h = max Icos t1 - cos t I,

where (if, for example, t > 0), t l is given by t l = 7Tk/n, t l < t < t l +7TJnforsome
k. Hence

h < 2 sin 2
7T

sin 7T
2
k < C ~ sin t < COn(t).

n n n

From (3) and (6) we obtain

IF(cos t) - T,,(t)! < C1 w(F, on) + !If-gil

< C2 w(F, On)'

This proves (5). We obtain (4) from this by means of the substitution x = cos t.
It is not known whether there exists an absolute constant A for which

for each increasing F on [-1, +1]. Here is a partial substitute:

THEOREM 3. There is a constant A so that if F is an increasing function on
[-1, +1], and ifEiF) < w(lJn), where w is some modulus ofcontinuity, then

(7)
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(For a characterization of a modulus of continuity see [1, p. 43].) Rela
tion (7) follows by combining Theorem 2 with the known inequality ([1], p. 73)

w(F, h) ~ Mh l<~h-l w U),
valid for each function F that satisfies jF(x) - p.(x)I~ w(Ll.(x».
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