Degree of Approximation by Monotone Polynomials I.

G. G. LORENTZ ${ }^{1}$
Department of Mathematics, The University of Texas, Austin, Texas 78712
AND
K. L. Zeller
Mathematisches Institut der Universität, 74 Tübingen, Germany

In late years, some attention has been attracted to the estimation of the degree of approximation of a continuous function by monotone polynomials, and more generally, by polynomials P_{n} of degree (at most) n, with a prescribed sign of the derivative $P_{n}^{(k)}(x)$ for some given k. See Shisha [3], Roulier [2]. Here we treat only the first case. (One can show uniqueness of the polynomial of best approximation in this case.) Let F be an increasing continuous function on $[-1,+1]$, let $E_{n}(F)$ be the degree of approximation of F by polynomials P_{n} of degree n. Let $E_{n}{ }^{*}(F)$ denote the degree of approximation of F by increasing polynomials of degree n. We show that $E_{n}^{*}(F)$ satisfies an inequality of Jackson's type, even in its sharpened form (see Theorem 2). The proof will be conducted by means of trigonometric approximation. A continuous 2π periodic function on $[-\pi, \pi]$ will be called bell-shaped, if it is even and if it decreases on $[0, \pi]$. By $\omega(f, h)=\omega(h)$ we denote the modulus of continuity of f, by C_{1}, C_{2}, \ldots, absolute constants.

Theorem 1. There exists a constant C with the following property. For each bell-shaped function f, one can find a bell-shaped trigonometric polynomial T_{n} for which

$$
\begin{equation*}
\left|f(x)-T_{n}(x)\right| \leqslant C \omega\left(f, \frac{1}{n}\right) \tag{1}
\end{equation*}
$$

Proof. Let J_{n} be the Jackson integral of f,

$$
\begin{gathered}
J_{n}(x)=J_{n}(f, x)=\int_{-\pi}^{\pi} K_{n}(x-t) f(t) d t \\
K_{n}(t)=\lambda_{n}^{-1}\left(\frac{\sin \frac{n t}{2}}{\sin \frac{t}{2}}\right)^{4}
\end{gathered}
$$

[^0]where λ_{n} is a normalizing constant. We put

$g(t)=g(f, t)=\left\{\begin{array}{l}f\left(\frac{\pi k}{n}\right)=c_{k}, \quad \text { for } \frac{\pi k}{n} \leqslant t<\frac{\pi(k+1)}{n}, \quad k=0,1, \ldots, n, \\ g(-t), \quad \text { for }-\pi \leqslant t \leqslant 0 .\end{array}\right.$
Then g is even and $|f(t)-g(t)| \leqslant \omega(\pi / n)$. Let $T_{n}(t)=J_{n}(g, t)$. Then T_{n} is even, and because of the inequality

$$
\begin{align*}
\left|f(t)-T_{n}(t)\right| & \leqslant\left|f(t)-J_{n}(f, t)\right|+\left|J_{n}(f, t)-J_{n}(g, t)\right| \\
& \leqslant C_{1} \omega\left(f, \frac{1}{n}\right)+\|f-g\| \leqslant C_{2} \omega\left(f, \frac{1}{n}\right), \tag{3}
\end{align*}
$$

it is sufficient to show that $T_{n}(x)$ is decreasing on $(0, \pi)$.
Let $a_{k}, k=0, \ldots, n-1$, be defined by

$$
c_{k}=a_{k}+\cdots+a_{n-1}, \quad k=0, \ldots, n-1 .
$$

Then $a_{k} \geqslant 0$, and

$$
T_{n}(x)=\sum_{k=0}^{n-1} a_{k} \int_{-\pi(k+1) / n}^{\pi(k+1) / n} K_{n}(x-t) d t=\sum_{k=1}^{n} a_{k-1} \int_{-\pi k / n}^{\pi k / n} K_{n}(x-t) d t
$$

Hence it is sufficient to show that the following functions are decreasing on (0, π):

$$
\phi_{k}(x)=\int_{-\pi k / n}^{\pi k / n} K_{n}(x-t) d t=\int_{x-(\pi k / n)}^{x+(\pi k / n)} K_{n}(t) d t .
$$

But

$$
\begin{aligned}
\phi_{k}^{\prime}(x) & =K_{n}\left(x+\frac{\pi k}{n}\right)-K_{n}\left(x-\frac{\pi k}{n}\right) \\
& =\lambda_{n}^{-1} \sin ^{4} \frac{n x+\pi k}{2}\left\{\frac{1}{\sin ^{4} \frac{1}{2}\left(x+\frac{\pi k}{n}\right)}-\frac{1}{\sin ^{4} \frac{1}{2}\left(x-\frac{\pi k}{n}\right)}\right\} \leqslant 0
\end{aligned}
$$

This follows from the following inequality:

$$
\sin (\alpha+\beta) \geqslant|\sin (\alpha-\beta)| \quad \text { if } 0 \leqslant \alpha, \beta=\frac{\pi}{2}
$$

In fact, $\sin (\alpha+\beta)-\sin (\alpha-\beta)=2 \sin \beta \cos \alpha \geqslant 0$, and $\sin (\alpha+\beta)+\sin (\alpha-\beta)$ $=2 \sin \alpha \cos \beta \geqslant 0$.

Theorem 2. There is a constant C_{0} with the following property. If F is an increasing function on $[-1,+1]$, then there exists a sequence of polynomials P_{n}, increasing on $[-1,+1]$, such that

$$
\begin{equation*}
\left|F(x)-P_{n}(x)\right| \leqslant C_{0} \omega\left(F, \Delta_{n}(x)\right), \quad \Delta_{n}(x)=\max \left(\frac{\sqrt{1-x^{2}}}{n}, \frac{1}{n^{2}}\right), \quad n=1,2, \ldots \tag{4}
\end{equation*}
$$

Proof. The function $f(t)=F(\cos t)$ is bell-shaped. For this function, we prove similarly to (1) of Theorem 1,

$$
\begin{equation*}
\left|f(t)-T_{n}(t)\right| \leqslant C \omega\left(F, \delta_{n}\right), \quad \delta_{n}(t)=\max \left(\frac{|\sin t|}{n}, \frac{1}{n^{2}}\right) \tag{5}
\end{equation*}
$$

with some bell-shaped T_{n}. We have ([I], p. 68), if $J_{n}(t)$ is the Jackson polynomial of the function f,

$$
\begin{equation*}
\left|F(\cos t)-J_{n}(t)\right| \leqslant C_{1} \omega\left(F, \delta_{n}\right) \tag{6}
\end{equation*}
$$

We put $g(t)=g(f, t)$; then, as before, $J_{n}(g, t)$ is bell-shaped, while

$$
|f(t)-g(f, t)| \leqslant \omega(F, h), \quad h=\max \left|\cos t_{1}-\cos t\right|
$$

where (if, for example, $t>0$), t_{1} is given by $t_{1}=\pi k / n, t_{1} \leqslant t<t_{1}+\pi / n$ for some k. Hence

$$
h \leqslant 2 \sin \frac{\pi}{2 n} \sin \frac{\pi k}{2 n} \leqslant C \frac{1}{n} \sin t \leqslant C \delta_{n}(t) .
$$

From (3) and (6) we obtain

$$
\begin{aligned}
\left|F(\cos t)-T_{n}(t)\right| & \leqslant C_{1} \omega\left(F, \delta_{n}\right)+\|f-g\| \\
& \leqslant C_{2} \omega\left(F, \delta_{n}\right)
\end{aligned}
$$

This proves (5). We obtain (4) from this by means of the substitution $x=\cos t$.
It is not known whether there exists an absolute constant A for which

$$
E_{n}^{*}(F) \leqslant A E_{n}(F)
$$

for each increasing F on $[-1,+1]$. Here is a partial substitute :
Theorem 3. There is a constant A so that if F is an increasing function on $[-1,+1]$, and if $E_{n}(F) \leqslant \omega(1 / n)$, where ω is some modulus of continuity, then

$$
\begin{equation*}
E_{n}^{*}(F) \leqslant A \frac{1}{n} \sum_{k=1}^{n} \omega\left(\frac{1}{k}\right), \quad n=1,2, \ldots \tag{7}
\end{equation*}
$$

(For a characterization of a modulus of continuity see [1, p. 43].) Relation (7) follows by combining Theorem 2 with the known inequality ([1], p. 73)

$$
\omega(F, h) \leqslant M h \sum_{1<k<h^{-1}} \omega\left(\frac{1}{k}\right),
$$

valid for each function F that satisfies $\left|F(x)-P_{n}(x)\right| \leqslant \omega\left(\Delta_{n}(x)\right)$.

References

1. G. G. Lorentz, "Approximation of Functions." Holt, Rinehart and Winston, New York, 1966.
2. John A. Roulier, Monotone approximation of certain classes of function. J. Approx. Theory 1 (1968), 319-324.
3. O. Shisha, Monotone approximation. Pacific J. Math. 15 (1965), 667-671.

[^0]: ${ }^{1}$ Supported by the Air Force Office of Scientific Research, Contract AF 49(638)-1401.

